Trails and More Trails
The talk on the Gunflint Trail is about trails lately. The Minnesota Conservation Corps completed work on trails in the Superior National Forest this summer.
From June through August, MCC young adult crews cleared and maintained more than 210 miles of trail throughout Superior National Forest. Corpsmembers camped at project sites and worked eight, 10-hour days followed by six-day breaks. Crews conducted six backcountry trips and removed 829 trees and trail obstructions, installed 163 erosion-control water bars, completed 3,711 feet of treadwork and contributed more than 25,458 hours of service. Their graduation was a two-day celebration held at Northern Tier Boys Scout Base in Ely, Minn.
A big thanks to the MCC and to Mark Ryan for all of his information and photos of the Magnetic Rock Trail he posted online at Science Buzz.
The Magnetic Rock Trail – what’s the attraction? by mdr on Sep. 08th, 2009
In the latter days of summer my wife and I took a drive up the Gunflint Trail and visited the Magnetic Rock Trail a spur trail jutting off the Gunflint near Gunflint Lake. Our original plans of lounging about the North Shore of Lake Superior had been scuttled by a mix-up in our cabin reservations, so I saw it as an opportunity to check out first-hand some of the local geology. I had visited the MRT briefly once before and my reasons for wanting to make the 50-mile drive from Grand Marais to revisit the trail were three-fold: stromatolites, meteorite impact ejecta, and, of course, magnetic rocks
Well, as it turns out, I wasn’t very successful,
Readers may recall the Ham Lake forest fires raged along the Gunflint Trail in the early summer of 2007, destroying several hundred acres of the surrounding forest along with resorts and private property. The fire, it was later determined, was started by an illegal campfire in the vicinity of Ham Lake that had gotten out of hand and spread quickly through the region. It was the second forest fire to rage through the Magnetic Rock Trail (MRT) in the past two decades (there was also a controlled burn in 2002). The latest fire removed much of the pine canopy that covered the area, opening it to more sky and sunlight, and new vistas of the surrounding terrain.
But as destructive as forest fires can be, they do have their upside. Forests are quick to revitalize after fires. New trees soon rise up from the ashes, and evidence of that in the MRT was apparent in the many jack pines (Pinus banksiana) we saw sprouting up everywhere. But trees aren’t the only affected flora. A lot of the groundcover gets incinerated as well, sometimes exposing patches of bedrock. In the case of the Magnetic Rock Trail, it meant new outcrops of the Gunflint Iron Formation were uncovered, revealing fresh unexplored exposures.
The Gunflint Iron Formation is a mass of iron ore taconite that spans from the Arrowhead region of Minnesota eastward into Ontario, Canada with the majority of the formation located on the Canadian side of the border. Most iron formations on Earth were formed around the same time, about 2 billion years ago during the Middle Pre-Cambrian (Early Proterozoic) times. A shallow sea (the Animikie) covered much of northern Minnesota and eastern Ontario at the time. The sea teemed with cyanobacteria in the form of stromatolites; thick microbial mats that helped oxygenate the Earth’s atmosphere and metabolize iron out of solution through photosynthesis. The iron-oxide sediments later became the iron ranges that span across northern Minnesota and Canada. Much of the rock along the Magnetic Rock Trail is composed of magnetite (Fe3 O4) inter-bedded with layers of chert or shale. Magnetite is the most magnetic of all the naturally occurring minerals, hence its name. The Gunflint Iron Formation is particularly resistant to erosion on the Minnesota side probably due to its nearness to the Duluth Complex intrusives. These influxes of magma moved into the area around 1.1 billion years ago, adding tremendous heat to the existing strata. The portion of the Gunflint Iron Formations (that located in Minnesota) closest to the heat source shows the most resistance to erosion.
Preserved within some of the newly exposed outcrops along the MRT are fossil records of these stromatolites, representing some of the oldest fossils found in Minnesota. Gunflint stromatolites contain large numbers of fossils that can be seen under a scanning electron microscope. I had been told that you can walk off the main path and find some of these ancient fossils, so I searched off-trail for a while and found what I thought were stromatolites, and took photos of them.
But later when I consulted with geologist Mark Jirsa, he wasn’t so sure.
“You’re looking at thin bedding in the iron formation that dips shallowly in comparison to the dip of the outcrop surface,” he wrote me. “The result is a swirly look, that looks deceptively like stromatolite mounds.”
Jirsa was in the field when I contacted him, and his Internet capability was limited, so when he tried to send me some photos of what the stromatolites actually looked like, they didn’t come through. However, his colleague, geologist Jim Miller (who also supplied welcomed assistance with this post) sent me a stromatolite photo he had taken at MRT.
Personally, I can’t tell the difference, but then I’m no geologist. so I have to bow to the professionals.
My second quest – to locate and photograph ejecta from the Sudbury Impact – wasn’t successful either. The aforementioned Mark Jirsa discovered this record of a 1.85 billion-year-old meteor impact in 2007. I wrote a previous post about it that same year so I won’t go into those details (you can read it here) but I will bring you up to speed on how he’s since interpreted the find.
Briefly, the Sudbury Impact Crater is located in Ontario, Canada, and was made by a meteorite about 10-miles in diameter that slammed into the Earth 1.85 million years ago. The 150-mile wide crater is the second largest known on the planet. The collision sent a tremendous firestorm of superheated material into the atmosphere, and some of it coalesced like hailstones and landed 480 miles away in northeastern Minnesota. This is what Jirsa discovered two years ago: a layer of ejecta mixed with torn up pieces (breccia ) of the Gunflint Formation, and all of it overlain by a younger layer of slate known as the Rove Formation. He published an article about it in Astronomy magazine, and there’s also a PDF file downloadable from Minnesota Geological Survey website (the link is located in the upper left of the MGS homepage).
What Jirsa found was quite remarkable: a layer of churned-up rocks laid down above the Gunflint Iron Formation. The odd jumble of rock included berry-shaped rocks known as accretionary lapilli, intermixed with the Gunflint Iron Formation rock. According to his interpretation, what is seen in the layer essentially shows the events of a single day in the geological record. And a nasty day it must have been.
Three minutes after the initial fireball impact at Sudbury, seismic waves from earthquakes measuring more than magnitude-10 on the Richter Scale reached the Animikie basin, ripping loose the iron formation off the seafloor crust, and redistributed it along a submarine slope. Within 10 minutes, a firestorm of molten material hailed down from the sky covering the region with from 3 to 10 feet of ejecta in the form of accretionary lapilli. Ultra-hurricane-force winds measuring up to 1400 mph(!) blasted over the shallow sea soon after, followed by the coup de grace – titanic tsunamis the likes of which have never been seen since which tossed everything into a stew of breccia (jumbled rock) and berry-shaped ejecta.
This day of horror took place sometime in the 48 million year interim that separates the Gunflint Iron Formation and the time the sediments of the Rove Formation were laid down above it. The entire concoction was later baked and metamorphosed by the intrusive magmas of the Duluth Complex.
How hard could it be to find evidence of a mess like this? Well, considering the MRT covers a large area, and since I had no information pinpointing any locations, it was like looking for a needle in a haystack – a very large haystack. In the end, I soon gave up because I really didn’t know what I was looking for and I realized how futile it probably would be. However, I’ve sure learned a whole lot about it now.
Initially, I thought at least my third quest – finding magnetic rock – would be a complete success because just about every rock exposed along the MRT is highly magnetic (I had a magnet with me and I can attest to that fact – see photo). It made sense that the whole reason the trail is called the Magnetic Rock Trail is because of all the magnetic rocks found there. But I’ve since learned I was once again totally wrong. The trail is name after a single large magnetic rock that’s about 1.5 miles up the trail. This 30-foot monolith stands upright and obvious in the middle of the forest and its notoriety dates back to early native American times. It is a chunk of the Gunflint Iron Formation – and highly magnetic like the rest of the rock in the area – but is deemed an erratic moved into place from a short distance away by glaciers during the last Ice Age. Had I read any of the brochures I had collected on our trip sometime other than when I got home, I would have known this before I even got there. But as it was, we didn’t walk that far into the trail so we missed it completely. Oh, well.
But even though my three main objectives for visiting the MRT were pretty much complete washouts, there was one unexpected surprise that will probably draw us back to the region next year: blueberries.
Wild blueberries (Vaccinium angustifolium) were all over the place. The low-bush berries thrive in sandy, acid soils of forest clearings, and in rocky areas around pines forests – just the type of environments you find around the MRT. So, once I finished with my failed geological studies, I assisted my wife in picking as many wild blueberries as we needed. We kept them in our cooler for the ride home, and as Mrs. R is prone to do, she jumbled all the berries together into a viscous concoction, all within a flakey crust that was heated over time at a very high-temperature.
The result looked something like the Sudbury Impact ejecta layer found near the Magnetic Rock Trail, but it was much more delicious, and a great way to end the summer.